

Welcome to aws-service-catalog-puppets’s documentation!

	What is this?
	High level architecture diagram

	Getting up and running
	What am I going to install?

	Before you install

	Installing the tool

	Setting it up

	Designing your manifest
	Purpose of the manifest file

	Sharing a portfolio
	What is sharing and how does it work?

	How can I set it up?

	What is the recommended implementation pattern?

	Is there anything else I should know?

	Notifications

	Upgrading

	Frequently asked Questions (FAQ)
	PuppetRole has been recreated

	How do I enable OpsCenter support

	Using the CLI
	reset-provisioned-product-owner

	add-to-accounts

	remove-from-accounts

	add-to-launches

	remove-from-launches

	dry-run

	import-product-set

	list-resources

	run

	list-launches

	Using the SDK
	Functions

	Project Assurance
	Assurance

	Project Management

What is this?

Service Catalog Puppet is a framework that enables you to provision service
catalog products into accounts that need to have them. You declare your service
catalog products and the accounts you want them to be available in via a
configuration file. Service Catalog Puppet then walks through this configuration
file and determines which products need to be made available in which accounts.
You can use tags or account numbers to indicate which products should be
available in which accounts. For example if using tags for both accounts and
products, products tagged dev will be made available in accounts tagged dev.

The framework works through your lists, dedupes and spots collisions and
then provisions the products into your AWS accounts for you. It handles Service
Portfolio sharing, accepting Portfolio shares and can provision products cross
account and cross region.

High level architecture diagram

[image: ../_images/whatisthis.png]What is this

You use an AWS CodeBuild project in a central hub account that provisions AWS
Service Catalog Products into spoke accounts on your behalf. The framework
takes care of cross account sharing and cross region product replication for
you.

Getting up and running

ServiceCatalog-Puppet runs in your AWS Account. In order for you to install it into your account you can use the
aws-service-catalog-puppet cli. This is distributed via [PyPi](https://pypi.org/project/aws-service-catalog-puppet/)

What am I going to install?

ServiceCatalog-Puppet is bootstrapped from your local machine. You install a command line utility that will provision
the resources you need into your AWS Account. Once you have completed the bootstrap you will have the following pipeline
in your account:

[image: ../_images/puppet-getting-started-what-am-i-going-to-install-pipeline.png]
using the following services:

[image: ../_images/puppet-getting-started-what-am-i-going-to-install.png]

Before you install

You should consider which account will be the home for your puppet. This account will contain the AWS CodePipelines
and will need to be accessible to any accounts you would like to share with. If you are using ServiceCatalog-Factory,
we recommend you install both tools into the same account.

Installing the tool

This is a python cli built using Python 3.

It is good practice to install Python libraries in isolated environments. You can create the a virtual environment using
the following command:

virtualenv --python=python3.7 venv
source venv/bin/activate

Once you have decided where to install the library you can install the package:

pip install aws-service-catalog-puppet

This will install the library and all of the dependencies.

Setting it up

The Puppet will run in your account and needs some configuration. You will need to stand up the puppet and set up the
configuration for it to run smoothly.

You will also need to provision an IAM Role within the _spoke_ accounts - those you want to provision products in.

Bootstrap your spokes

You will need to bootstrap each of your spokes. In order to do so please export your credentials and then run:

servicecatalog-puppet bootstrap-spoke <ACCOUNT_ID_OF_YOUR_PUPPET>

Bootstrap your account

There are two or threes parts to bootstrapping the puppet.

Setting up your global configuration

The first is concerned with setting the global configurations.
To do this we use AWS SSM Parameters. To get setup you need to create a configuration file with a list of regions you want to
use. You must also specify if you want to collect the CloudFormation events from provisioning actions via SQS.

Here is an example config.yaml:

regions: [
 'us-east-2',
 'us-east-1',
 'us-west-1',
 'us-west-2',
 'ap-south-1',
 'ap-northeast-2',
 'ap-southeast-1',
 'ap-southeast-2',
 'ap-northeast-1',
 'ca-central-1',
 'eu-west-1',
 'eu-west-2',
 'eu-west-3',
 'sa-east-1',
]
should_collect_cloudformation_events: false
should_forward_events_to_eventbridge: true
should_forward_failures_to_opscenter: true

Note

should_collect_cloudformation_events was added in version 0.33.0

Note

should_forward_events_to_eventbridge was added in version 0.35.0
should_forward_failures_to_opscenter was added in version 0.35.0

Once you have this file you need to upload the config:

servicecatalog-puppet upload-config config.yaml

If you make changes to this you will need to run upload-config and bootstrap commands again for the changes to occur.

Once that has completed you are ready to bring up the rest of the puppet.

Setting to to use AWS Organizations

The second part to bootstrapping is optional. If you would like to use AWS Organizations features in your manifest file
you will need to set which IAM Role should be used to perform these actions.

To create the correct role in your organization master export your credentials or change profile and run the following:

servicecatalog-puppet bootstrap-org-master <ACCOUNT_ID_OF_YOUR_PUPPET>

This command will provision a role the account you specified and output the ARN of the role.

Once you have the ARN or you know the ARN you want to use you can configure the framework to use it. Export the
credentials for your puppet account or change your profile so you are using your puppet account and run the following
command:

servicecatalog-puppet set-org-iam-role-arn <THE_ARN_YOU_WANT_TO_USE>

Once you have run that command you are ready for the final stage.

Configuring your puppet

When you bootstrap your account you can choose whether to have a manual approval step in your deployment pipeline.

If you choose to enable manual approvals an AWS SNS Topic with the ARN
arn:aws:sns:${AWS::Region}:${AWS::AccountId}:service-catalog-puppet-dry-run-approvals will be created to notify you
when approvals are required.

To start the bootstrap process you must run the following in your master account:

servicecatalog-puppet bootstrap

If you want to enable manual approvals you must bootstrap using the following command:

servicecatalog-puppet bootstrap --with-manual-approvals

Setup your puppet

Clone the configuration repo and configure your factory by editing the manifest.yaml file:

git clone --config 'credential.helper=!aws codecommit credential-helper $@' --config 'credential.UseHttpPath=true' https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/ServiceCatalogPuppet
servicecatalog-puppet seed simple ServiceCatalogPuppet
cd ServiceCatalogPuppet
vim manifest.yaml
git add .
git commit -am "initial add"
git push

Wait for pipeline to complete and you have a working puppet.

Designing your manifest

Purpose of the manifest file

The manifest file is there to describe what you want to provision and into which accounts you want to provision products
into. It is possible to use AWS Organizations to make your manifest file more concise and easier to work with but the
premise is the same - it is just a list of accounts and AWS Service Catalog products.

Sections of the manifest file

There are three sections to a manifest file - the global parameters, the accounts list and the launches. Each of the
three are described in the following sections.

Parameters

It is possible to specify global parameters that should be used when provisioning your AWS Service Catalog Products.
You can set the value to an explicit value or you can set the value to the result of a function call - using funcation
calls to set parameter values is known as using a macro.

Here is an example of a simple global parameter:

schema: puppet-2019-04-01

parameters:
 CloudTrailLoggingBucketName:
 default: cloudtrail-logs-for-aws

It is possible to also specify a parameter at the account level:

accounts:
 - account_id: '<YOUR_ACCOUNT_ID>'
 name: '<YOUR_ACCOUNT_NAME>'
 default_region: eu-west-1
 regions_enabled:
 - eu-west-1
 - eu-west-1
 tags:
 - type:prod
 - partition:eu
 - scope:pci
 parameters:
 RoleName:
 default: DevAdmin
 Path:
 default: /human-roles/

And finally you specify parameters at the launch level:

launches:
 account-iam-for-prod:
 portfolio: demo-central-it-team-portfolio
 product: account-iam
 version: v1
 parameters:
 RoleName:
 default: DevAdmin
 Path:
 default: /human-roles/
 deploy_to:
 tags:
 - tag: type:prod
 regions: default_region

Whenever Puppet provisions a product it checks the parameters for the product. If it sees the name match one of the
parameter values it will use it. In order to avoid clashes with parameter names we recommend using descriptive names
like in the example - using the parameter names like BucketName will lead you into trouble pretty quickly.

The order of precedence for parameters is account level parameters override all others and launch level parameters
override global.

Retrieving AWS SSM Parameters

Note

This was added in version 0.0.33

You can retrieve parameter values from SSM. Here is an an example:

schema: puppet-2019-04-01

parameters:
 CentralLoggingBucketName:
 ssm:
 name: central-logging-bucket-name

You can get a different value for each region:

schema: puppet-2019-04-01

parameters:
 CentralLoggingBucketName:
 ssm:
 name: central-logging-bucket-name
 region: eu-west-1

Setting AWS SSM Parameters

Note

This was added in version 0.0.34

You can set the value of an SSM Parameter to the output of a CloudFormation stack output:

account-iam-sysops:
 portfolio: demo-central-it-team-portfolio
 product: account-iam
 version: v1
 parameters:
 Path:
 default: /human-roles/
 RoleName:
 default: SysOps
 deploy_to:
 tags:
 - regions: default_region
 tag: type:prod
 outputs:
 ssm:
 - param_name: account-iam-sysops-role-arn
 stack_output: RoleArn

The example above will provision the product account-iam into an account. Once the stack has been completed it
will get the value of the output named RoleArn of the CloudFormation stack and insert it into SSM within the default
region using a parameter name of account-iam-sysops-role-arn

You can also set override which region the output is read from and which region the SSM parameter is written to:

account-iam-sysops:
 portfolio: demo-central-it-team-portfolio
 product: account-iam
 version: v1
 parameters:
 Path:
 default: /human-roles/
 RoleName:
 default: SysOps
 deploy_to:
 tags:
 - regions: default_region
 tag: type:prod
 outputs:
 ssm:
 - param_name: account-iam-sysops-role-arn
 stack_output: RoleArn
 region: us-east-1

Note

There is currently no capability of reading a value from a CloudFormation stack from one region and setting an SSM param in another.

Macros

You can also use a macro to set the value of a parameter. It works in the same way as a normal parameter except it
executes a function to get the value first. Here is an an example:

schema: puppet-2019-04-01

parameters:
 AllAccountIds:
 macro:
 method: get_accounts_for_path
 args: /

At the moment there are the following macros supported:

+------------------------+------------------------------+--+
| macro method name | args | description |
+========================+==============================+==+
| get_accounts_for_path | ou path to get accounts for | Returns a comma seperated list of account ids|
+------------------------+------------------------------+--+

Accounts

With the accounts section, you can describe your AWS accounts. You can set a default region, the enabled regions and
you can tag your accounts. This metadata describing your account is used to determine which packages get deployed into
your accounts.

Setting a default region

Within your account you may have a _home_ or a default region. This may be the closest region to the team using the
account. You use default_region when describing your account and then you can use default_region again as a
target when you specify your product launches - the product will be provisioned into the region specified.

Here is an example with a default_region set to us-east-1:

schema: puppet-2019-04-01

accounts:
 - account_id: '<YOUR_ACCOUNT_ID>'
 name: '<YOUR_ACCOUNT_NAME>'
 default_region: us-east-1
 regions_enabled:
 - us-east-1
 - us-west-2
 tags:
 - type:prod
 - partition:us
 - scope:pci

Note

Please note default_region can only be a string - not a list.

Setting enabled regions

You may chose not to use every region within your AWS Account. When describing an AWS account you can specify which
regions are enabled for an account using regions_enabled.

Here is an example with regions_enabled set to us-east-1 and us-west-2:

schema: puppet-2019-04-01

accounts:
 - account_id: '<YOUR_ACCOUNT_ID>'
 name: '<YOUR_ACCOUNT_NAME>'
 default_region: us-east-1
 regions_enabled:
 - us-east-1
 - us-west-2
 tags:
 - type:prod
 - partition:us
 - scope:pci

Note

Please note regions_enabled can only be a list of strings - not a single string

Setting tags

You can describe your account using tags. Tags are specified using a list of strings. We recommend using namespaces
for your tags, adding an extra dimension to them. If you choose to do this you can use a colon to split name and values.

Here is an example with namespaced tags:

schema: puppet-2019-04-01

accounts:
 - account_id: '<YOUR_ACCOUNT_ID>'
 name: '<YOUR_ACCOUNT_NAME>'
 default_region: us-east-1
 regions_enabled:
 - us-east-1
 - us-west-2
 tags:
 - type:prod
 - partition:us
 - scope:pci

In this example there the following tags:
- namespace of type and value of prod
- namespace of partition and value of us
- namespace of scope and value of pci.

The goal of tags is to provide a classification for your accounts that can be used to a deployment time.

Using an OU id or path (integration with AWS Organizations)

Note

This was added in version 0.0.18

When specifying an account you can use short hand notation of ou instead of account_id to build out a list
of accounts with the same properties.

For example you can use an AWS Organizations path:

schema: puppet-2019-04-01

accounts:
 - ou: /prod
 name: '<CHOOSE A NAME FOR YOUR ACCOUNTS LIST>'
 default_region: us-east-1
 regions_enabled:
 - us-east-1
 - us-west-2
 tags:
 - type:prod
 - partition:us
 - scope:pci

The framework will get a list of all AWS accounts within the /prod Organizational unit and expand your manifest to
look like the following (assuming accounts 0123456789010 and 0109876543210 are the only accountss within /prod):

schema: puppet-2019-04-01

accounts:
 - account_id: 0123456789010
 name: '<YOUR_ACCOUNT_NAME>'
 default_region: us-east-1
 regions_enabled:
 - us-east-1
 - us-west-2
 tags:
 - type:prod
 - partition:us
 - scope:pci
 - account_id: 0109876543210
 name: '<YOUR_ACCOUNT_NAME>'
 default_region: us-east-1
 regions_enabled:
 - us-east-1
 - us-west-2
 tags:
 - type:prod
 - partition:us
 - scope:pci

Launches

Launches allow you to decide which products get provisioned into each account. You link product launches to accounts
using tags or explicit account ids and you can set which regions the products are launched into.

Timeouts

Note

This was added in version 0.1.14

If you are worried that a launch may fail and take a long time to fail you can set a timeout timeoutInSeconds:

schema: puppet-2019-04-01

launches:
 account-iam-for-prod:
 portfolio: example-simple-central-it-team-portfolio
 product: account-iam
 timeoutInSeconds: 10
 version: v1
 deploy_to:
 tags:
 - tag: type:prod
 regions: default_region

Tag based launches

You can specify a launch to occur using tags in the deploy_to section of a launch.

Here is an example, it deploys a v1 of a product named account-iam from the portfolio
example-simple-central-it-team-portfolio into into the default_region of all accounts tagged type:prod:

schema: puppet-2019-04-01

launches:
 account-iam-for-prod:
 portfolio: example-simple-central-it-team-portfolio
 product: account-iam
 version: v1
 deploy_to:
 tags:
 - tag: type:prod
 regions: default_region

Account based launches

You can also specify a launch to occur explicity in an account by using the accounts section in the
deploy_to section of a launch.

Here is an example, it deploys a v1 of a product named account-iam from the portfolio
example-simple-central-it-team-portfolio into into the default_region of the accounts 0123456789010:

schema: puppet-2019-04-01

launches:
 account-iam-for-prod:
 portfolio: example-simple-central-it-team-portfolio
 product: account-iam
 version: v1
 deploy_to:
 accounts:
 - account_id: '0123456789010'
 regions: default_region

Choosing which regions to provision into

When writing your launches you can choose which regions you provision into.

The valid values for regions are:
- enabled - this will deploy to each enabled region for the account
- regions_enabled - this will deploy to each enabled region for the account
- default_region - this will deploy to the default region specified for the account
- all - this will deploy to all regions enabled in your config (whilst setting up Puppet)
- list of AWS regions - you can type in a list of AWS regions (each region selected should be present in your config)

Dependencies between launches

Where possible we recommend building launches to be independent. However, there are cases where you may need to setup a
hub account before setting up a spoke or there may be times you are using AWS Lambda to back AWS CloudFormation custom
resources. In these examples it would be beneficial to be able to say deploy launch x and then launch y. To achieve this
You can use depends_on within your launch like so:

launches:
 account-vending-account-creation:
 portfolio: demo-central-it-team-portfolio
 product: account-vending-account-creation
 version: v1
 depends_on:
 - account-vending-account-bootstrap-shared
 - account-vending-account-creation-shared
 deploy_to:
 tags:
 - tag: scope:puppet-hub
 regions: default_region

 account-vending-account-bootstrap-shared:
 portfolio: demo-central-it-team-portfolio
 product: account-vending-account-bootstrap-shared
 version: v1
 deploy_to:
 tags:
 - tag: scope:puppet-hub
 regions: default_region

 account-vending-account-creation-shared:
 portfolio: demo-central-it-team-portfolio
 product: account-vending-account-creation-shared
 version: v1
 deploy_to:
 tags:
 - tag: scope:puppet-hub
 regions: default_region

In this example the framework will deploy account-vending-account-creation only when
account-vending-account-bootstrap-shared and account-vending-account-creation-shared have been attempted.

Termination of products

Note

This was added in version 0.1.11

To terminate the provisioned product from a spoke account (which will delete the resources deployed) you can change
the status of the launch using the status keyword:

launches:
 account-vending-account-creation:
 portfolio: demo-central-it-team-portfolio
 product: account-vending-account-creation
 version: v1
 status: terminated
 deploy_to:
 tags:
 - tag: scope:puppet-hub
 regions: default_region

When you mark a launch as terminated and run your pipeline the resources will be deleted and you can then remove the
launch from your manifest. Leaving it in will not cause any errors but will result in your pipeline running time to be
longer than it needs to be.

Please note, when mark your launch as terminated it cannot have dependencies, parameters or outputs. Leaving
these in will cause the termination action to fail.

Note

When you set status to terminated you must remove your depends_on and parameters for it to work.

Warning

Since 0.1.16, terminating a product will also remove any SSM Parameters you created for it via the manifest.yaml

Sharing a portfolio

What is sharing and how does it work?

Note

This was added in version 0.1.14

This framework allows you to create portfolios in other accounts that mirror the portfolio in your hub account. The
framework will create the portfolio for you and copy the products (along with their versions) from your hub account into
the newly created portfolio.

In addition to this, you can specify associations for the created portfolio and add launch constraints for the products.

Warning

Once a hub product version has been copied into a spoke portfolio it will not be updated.

How can I set it up?

The following is an example of how to add the portfolio example-simple-central-it-team-portfolio to all spokes tagged
scope:spoke:

spoke-local-portfolios:
 account-vending-for-spokes:
 portfolio: example-simple-central-it-team-portfolio
 depends_on:
 - account-iam-for-spokes
 associations:
 - arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
 constraints:
 launch:
 - product: account-vending-account-creation-shared
 roles:
 - arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
 deploy_to:
 tags:
 - tag: scope:spoke
 regions: default_region

The example above will create the portfolio once the depends_on launches have completed successfully.

The valid values for regions are:
- enabled - this will deploy to each enabled region for the account
- regions_enabled - this will deploy to each enabled region for the account
- default_region - this will deploy to the default region specified for the account
- all - this will deploy to all regions enabled in your config (whilst setting up Puppet)
- list of AWS regions - you can type in a list of AWS regions (each region selected should be present in your config)

How can I add an association?

The example above will add an association for the IAM principal:

arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

so the portfolio will be accessible for anyone assuming that role. In addition to roles, you can also specify the ARN of
users and groups.

Note

Using ${AWS::AccountId} will evaluate in the spoke account.

How can I add a launch constraint?

The example above will add a launch constraint for the IAM role:

arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

so they can launch the product account-vending-account-creation-shared in the spoke account.

Warning

You can only specify an IAM role and the role must be assumable by the AWS service principal servicecatalog.amazonaws.com

Note

Using ${AWS::AccountId} will evaluate in the spoke account.

Note

Support for using products was added in version 0.3.0.

You can use products instead of product to specify either a list of products or use a regular expression. The
regular expression is matched using Python3 re.match.

Using a list:

spoke-local-portfolios:
 account-vending-for-spokes:
 portfolio: example-simple-central-it-team-portfolio
 depends_on:
 - account-iam-for-spokes
 associations:
 - arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
 constraints:
 launch:
 - products:
 - account-vending-account-bootstrap-shared
 - account-vending-account-creation-shared
 roles:
 - arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
 deploy_to:
 tags:
 - tag: scope:spoke
 regions: default_region

Using a regular expression:

spoke-local-portfolios:
 account-vending-for-spokes:
 portfolio: example-simple-central-it-team-portfolio
 depends_on:
 - account-iam-for-spokes
 associations:
 - arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
 constraints:
 launch:
 - products: "account-vending-account-*"
 roles:
 - arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
 deploy_to:
 tags:
 - tag: scope:spoke
 regions: default_region

What is the recommended implementation pattern?

	Add an entry to launches that will provision a product into to your matching spokes. This product should provide the IAM roles your users will assume to interact with the portfolio you are going to add.

	Add an entry to spoke-local-portfolios to add a portfolio to your matching spokes. This should depend on the product you launched that contains the IAM roles you added to the launches section of your manifest.

Is there anything else I should know?

	It would be good to become familar with the AWS Service Catalog pricing [https://aws.amazon.com/servicecatalog/pricing/] before using this feature.

Notifications

You can listen to the AWS CloudFormation stack events from your product provisioning.

This is the recommended way of discovering provisioning errors.

When you bootstraped your account you will have created an AWS SQS Queue:
servicecatalog-puppet-cloudformation-events in your default region.

You will also have SNS Topics in each region configured to push events to this queue:
servicecatalog-puppet-cloudformation-regional-events

Please note this will only receive notifications for products provisioned using
ServiceCatalog-Puppet - any self service vending from AWS Service Catalog will not
publish to this queue.

You should handle consuming the queue and have your own error handling code.

Upgrading

Firstly, verify which version you have installed already:

servicecatalog-puppet version

If this errors, check you have activated your virtualenv.

Then you are ready to install the version you want:

pip install aws-service-catalog-puppet==<version>

If you want to upgrade to the latest you can run:

pip install --upgrade aws-service-catalog-puppet

Once you have completed the upgrade you will have to bootstrap your install again:

servicecatalog-puppet bootstrap

And finally, you can verify the upgrade has worked by running version again:

servicecatalog-puppet version

Frequently asked Questions (FAQ)

	PuppetRole has been recreated

	How do I enable OpsCenter support

PuppetRole has been recreated

	My PuppetRole has been recreated and now I cannot perform updates to provisioned products. What should I do?

	You will need to follow these steps:

	Delete the AWS Cloudformation Stacks named servicecatalog-puppet-shares. There will be one in each region you operate in. you can use the utility delete-stack-from-all-regions [https://aws-service-catalog-factory.readthedocs.io/en/latest/factory/using_the_cli.html#delete-stack-from-all-regions] to help

	Run the puppet pipeline again

	Run the cli command reset-provisioned-product-owner [https://aws-service-catalog-factory.readthedocs.io/en/latest/factory/using_the_cli.html#reset-provisioned-product-owner] on your expanded manifest file.

How do I enable OpsCenter support

	How do I enable OpsCenter support?

A. You will need to be running at least version 0.35.0. You can check your version by running the version cli command.
If it is below 0.35.0 you will need to upgrade. Once you are running the correct version you will been to update your
config file to include:

should_forward_failures_to_opscenter: true

Your file should look like the following:

regions: [
 'eu-west-1',
 'eu-west-2',
 'eu-west-3'
]
should_forward_failures_to_opscenter: true

Once you have made the change you will need to upload your config again:

servicecatalog-puppet upload-config config.yaml

Using the CLI

The following utils will help you manage your AWS Accounts when using ServiceCatalog-Puppet:

reset-provisioned-product-owner

Note

This was added in version 0.19.0

You can use the servicecatalog-puppet cli to update the Service Catalog Puppet managed provisioned product owner
for each provisioned product across all of your accounts:

servicecatalog-puppet reset-provisioned-product-owner <path_to_expanded_manifest>

Will call the following function for each provisioned product you have:

service_catalog.update_provisioned_product_properties(
 ProvisionedProductId=provisioned_product_id,
 ProvisionedProductProperties={
 'OWNER': f"arn:aws:iam::{self.account_id}:role/servicecatalog-puppet/PuppetRole"
 }
)

add-to-accounts

Note

This was added in version 0.18.0

You can use the servicecatalog-puppet cli to see add an account or ou to your accounts list:

servicecatalog-puppet add-to-accounts <path_to_file_containing_account_or_ou>

The file containing the account or ou should be structured like this:

account_id: '753572411233'
default_region: eu-west-1
name: '753572411233'
regions_enabled:
 - eu-west-1
 - eu-west-2
tags:
 - type:prod
 - partition:eu
 - scope:pci

remove-from-accounts

Note

This was added in version 0.18.0

You can use the servicecatalog-puppet cli to remove an account or ou to your accounts list:

servicecatalog-puppet remove-from-accounts <account_id_or_ou_id_or_ou_path>

The library will look for the given account id, ou id or ou path and remove it, if found. If it is missing an exception
will be raised.

add-to-launches

Note

This was added in version 0.18.0

You can use the servicecatalog-puppet cli to see add a launch to your launches list:

servicecatalog-puppet add-to-launches <launch-name-to-add> <path_to_file_containing_launch>

The file containing the launch should be structured like this:

portfolio: example-simple-central-it-team-portfolio
product: aws-iam-assume-roles-spoke
version: v1
parameters:
 SecurityAccountId:
 default: '753572411233'
deploy_to:
 tags:
 - regions: default_region
 tag: type:prod

remove-from-launches

Note

This was added in version 0.18.0

You can use the servicecatalog-puppet cli to see remove a launch from your launches list:

servicecatalog-puppet remove-from-launches <launch-name-to-remove>

dry-run

Note

This was added in version 0.8.0

You can use the servicecatalog-puppet cli to see the effect of your next pipeline run before it happens

servicecatalog-puppet dry-run ServiceCatalogPuppet/manifest.yaml

You must specify the path to the manifest file you want to add execute a dry run on.

import-product-set

Note

This was added in version 0.8.0

You can use the servicecatalog-puppet cli to import products from the aws-service-catalog-products shared repo.

This will update your manifest file.

servicecatalog-puppet import-product-set ServiceCatalogPuppet/manifest.yaml aws-iam central-it-team-portfolio

You must specify the path to the manifest file you want to add the product set to, the name of the product set and the name
of the portfolio where was added.

list-resources

Note

This was added in version 0.7.0

You can use the servicecatalog-puppet cli to list all the resources that will be created to bootstrap the framework

servicecatalog-puppet list-resources

Will return the following markdown:

Framework resources
SSM Parameters used
- /servicecatalog-puppet/config
Resources for stack: servicecatalog-puppet-org-master
┌─────────────────────────┬─────────────────────┬───┐
│ Logical Name │ Resource Type │ Name │
├─────────────────────────┼─────────────────────┼───┤
│ Param │ AWS::SSM::Parameter │ service-catalog-puppet-org-master-version │
│ PuppetOrgRoleForExpands │ AWS::IAM::Role │ PuppetOrgRoleForExpands │
└─────────────────────────┴─────────────────────┴───┘
Resources for stack: servicecatalog-puppet-regional
┌────────────────────────┬─────────────────────┬──┐
│ Logical Name │ Resource Type │ Name │
├────────────────────────┼─────────────────────┼──┤
│ DefaultRegionParam │ AWS::SSM::Parameter │ /servicecatalog-puppet/home-region │
│ Param │ AWS::SSM::Parameter │ service-catalog-puppet-regional-version │
│ PipelineArtifactBucket │ AWS::S3::Bucket │ Fn::Sub: sc-puppet-pipeline-artifacts-${AWS::AccountId}-${AWS::Region} │
│ │ │ │
│ RegionalProductTopic │ AWS::SNS::Topic │ servicecatalog-puppet-cloudformation-regional-events │
└────────────────────────┴─────────────────────┴──┘
Resources for stack: servicecatalog-puppet-spoke
┌──────────────┬─────────────────────┬──────────────────────────────────────┐
│ Logical Name │ Resource Type │ Name │
├──────────────┼─────────────────────┼──────────────────────────────────────┤
│ Param │ AWS::SSM::Parameter │ service-catalog-puppet-spoke-version │
│ PuppetRole │ AWS::IAM::Role │ PuppetRole │
└──────────────┴─────────────────────┴──────────────────────────────────────┘
Resources for stack: servicecatalog-puppet
┌─────────────────────────────────┬─────────────────────────────┬───┐
│ Logical Name │ Resource Type │ Name │
├─────────────────────────────────┼─────────────────────────────┼───┤
│ Param │ AWS::SSM::Parameter │ service-catalog-puppet-version │
│ ShareAcceptFunctionRole │ AWS::IAM::Role │ ShareAcceptFunctionRole │
│ ProvisioningRole │ AWS::IAM::Role │ PuppetProvisioningRole │
│ CloudFormationDeployRole │ AWS::IAM::Role │ CloudFormationDeployRole │
│ PipelineRole │ AWS::IAM::Role │ PuppetCodePipelineRole │
│ SourceRole │ AWS::IAM::Role │ PuppetSourceRole │
│ CodeRepo │ AWS::CodeCommit::Repository │ ServiceCatalogPuppet │
│ Pipeline │ AWS::CodePipeline::Pipeline │ Fn::Sub: ${AWS::StackName}-pipeline │
│ │ │ │
│ GenerateRole │ AWS::IAM::Role │ PuppetGenerateRole │
│ DeployRole │ AWS::IAM::Role │ PuppetDeployRole │
│ GenerateSharesProject │ AWS::CodeBuild::Project │ servicecatalog-puppet-generate │
│ DeployProject │ AWS::CodeBuild::Project │ servicecatalog-puppet-deploy │
│ SingleAccountRunProject │ AWS::CodeBuild::Project │ servicecatalog-puppet-single-account-run │
│ CloudFormationEventsQueue │ AWS::SQS::Queue │ servicecatalog-puppet-cloudformation-events │
│ CloudFormationEventsQueuePolicy │ AWS::SQS::QueuePolicy │ - │
└─────────────────────────────────┴─────────────────────────────┴───┘

n.b. AWS::StackName evaluates to servicecatalog-puppet

run

Note

This was added in version 0.3.0

The run command will run the main AWS CodePipeline servicecatalog-puppet-pipeline

servicecatalog-puppet run

You can also tail the command to watch the progress of the pipeline. It is a little underwhelming at the moment.

servicecatalog-puppet run --tail

list-launches

The list-launches command can currently only be invoked on an expanded manifest.yaml file. To
expand your manifest you must run the following:

servicecatalog-puppet expand manifest.yaml

This will create a file named manifest-expanded.yaml in the same directory.

You can then run list-launches:

servicecatalog-puppet list-launches manifest-expanded.yaml

Here is an example table produced by running the command:

+--------------+-----------+------------------------------+--+---------------------------------+------------------+----------------+--------+-----------+
| account_id | region | launch | portfolio | product | expected_version | actual_version | active | status |
+--------------+-----------+------------------------------+--+---------------------------------+------------------+----------------+--------+-----------+
| 012345678901 | eu-west-1 | iam-assume-roles-spoke | example-simple-central-it-team-portfolio | aws-iam-assume-roles-spoke | v1 | v1 | True | AVAILABLE |
| 012345678901 | eu-west-1 | iam-groups-security-account | example-simple-central-it-team-portfolio | aws-iam-groups-security-account | v1 | v1 | True | AVAILABLE |
+--------------+-----------+------------------------------+--+---------------------------------+------------------+----------------+--------+-----------+

Note

This was added in version 0.15.0

You can specify the format of the output. Currently you can choose between json and table. The default is
table.

servicecatalog-puppet list-launches manifest-expanded.yaml --format json

Using the SDK

Note

This was added in 0.18.0

Service Catalog Puppet includes a published SDK. You can make use of the python functions available:

from servicecatalog_puppet import sdk

The functions available are:

Functions

	
servicecatalog_puppet.sdk.add_to_accounts(account_or_ou)

	Add the parameter to the account list of the manifest file

	Parameters

	account_or_ou – A dict describing the the account or the ou to be added

	
servicecatalog_puppet.sdk.add_to_launches(launch_name, launch)

	Add the given launch to the launches section using the given launch_name

	Parameters

	
	launch_name – The launch name to use when adding the launch to the manifest launches

	launch – The dict to add to the launches

	
servicecatalog_puppet.sdk.bootstrap(with_manual_approvals)

	Bootstrap the puppet account. This will create the AWS CodeCommit repo containing the config and it will also
create the AWS CodePipeline that will run the solution.

	Parameters

	with_manual_approvals – Boolean to specify whether there should be manual approvals before provisioning occurs

	
servicecatalog_puppet.sdk.remove_from_accounts(account_id_or_ou_id_or_ou_path)

	remove the given account_id_or_ou_id_or_ou_path from the account list

	Parameters

	account_id_or_ou_id_or_ou_path – the value can be an account_id, ou_id or an ou_path. It should be present in the

accounts list within the manifest file or an error is generated

	
servicecatalog_puppet.sdk.remove_from_launches(launch_name)

	remove the given launch_name from the launches list

	Parameters

	launch_name – The name of the launch to be removed from the launches section of the manifest file

	
servicecatalog_puppet.sdk.run(what='puppet', wait_for_completion=False)

	Run something

	Parameters

	
	what – what should be run. The only parameter that will work is puppet

	wait_for_completion – Whether the command should wait for the completion of the pipeline before it returns

	
servicecatalog_puppet.sdk.upload_config(config)

	This function allows you to upload your configuration for puppet. At the moment this should be a dict with an
attribute named regions:
regions: [

‘eu-west-3’,
‘sa-east-1’,

]

	Parameters

	config – The dict containing the configuration used for puppet

Project Assurance

Assurance

This project has been through an assurance process to ensure the project is:

	valuable to AWS customers

	properly licenced

The same process ensures that there are mechanisms to ensure maintainers are:

	likely able to acceptably support it with regards to being responsive to github issues and pull requests

And finally, at the time of publishing:

	any 3rd party components actually contained in the repo are checked to ensure they are correctly licensed and that we are correctly complying with the open source licenses that apply to those 3rd party components.

Project Management

Quality Assurance

CICD Process

Unit tests are run on every commit. If unit tests fail a release of the project cannot occur.

The project dependencies are scanned on each commit for known vulnerabilities. If an issue is discovered a release of the project cannot occur.

Review Process

There are regular reviews of the source code where static analysis results and unit test coverage are assessed.

Raising a feature request

Product feature requests drive the majority of changes to this project. If you would like to raise a feature request
please raise a Github issue.

Backwards compatibility

All changes to date have been fully backwards compatible. Effort will be made to ensure this where possible.

Design consultation

When there is a significant addition or change to the internal implementation we consult a limited number of users.
Users are asked to access the potential impact so that we can understand the impact and the potential value of the
change. If you would like to register as such a user please raise a Github issue.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 servicecatalog_puppet	

 	
 	
 servicecatalog_puppet.sdk	

Index

 A
 | B
 | R
 | S
 | U

A

 	
 	add_to_accounts() (in module servicecatalog_puppet.sdk)

 	
 	add_to_launches() (in module servicecatalog_puppet.sdk)

B

 	
 	bootstrap() (in module servicecatalog_puppet.sdk)

R

 	
 	remove_from_accounts() (in module servicecatalog_puppet.sdk)

 	
 	remove_from_launches() (in module servicecatalog_puppet.sdk)

 	run() (in module servicecatalog_puppet.sdk)

S

 	
 	servicecatalog_puppet.sdk (module)

U

 	
 	upload_config() (in module servicecatalog_puppet.sdk)

 nav.xhtml

 Table of Contents

 		
 Welcome to aws-service-catalog-puppets’s documentation!

 		
 What is this?

 		
 High level architecture diagram

 		
 Getting up and running

 		
 What am I going to install?

 		
 Before you install

 		
 Installing the tool

 		
 Setting it up

 		
 Bootstrap your spokes

 		
 Bootstrap your account

 		
 Setup your puppet

 		
 Designing your manifest

 		
 Purpose of the manifest file

 		
 Sections of the manifest file

 		
 Sharing a portfolio

 		
 What is sharing and how does it work?

 		
 How can I set it up?

 		
 How can I add an association?

 		
 How can I add a launch constraint?

 		
 What is the recommended implementation pattern?

 		
 Is there anything else I should know?

 		
 Notifications

 		
 Upgrading

 		
 Frequently asked Questions (FAQ)

 		
 PuppetRole has been recreated

 		
 How do I enable OpsCenter support

 		
 Using the CLI

 		
 reset-provisioned-product-owner

 		
 add-to-accounts

 		
 remove-from-accounts

 		
 add-to-launches

 		
 remove-from-launches

 		
 dry-run

 		
 import-product-set

 		
 list-resources

 		
 run

 		
 list-launches

 		
 Using the SDK

 		
 Functions

 		
 Project Assurance

 		
 Assurance

 		
 Project Management

 		
 Quality Assurance

 		
 Raising a feature request

 		
 Backwards compatibility

 		
 Design consultation

_images/puppet-getting-started-what-am-i-going-to-install-pipeline.png
‘Source,

Generate.

Generate map of
portiolo to accounts|
based on manifest,

‘Setup shares

for each enabled region

for each spoke

— set up sharing of
portiolo, assets AWS

'S3 bucket and eror
AWS SNS topics.

Deploy

Generate map of

product version

for each spoke account

for each enabled region

provision product

provisions to accounts
based on manifest

version

_images/puppet-getting-started-what-am-i-going-to-install.png
Puppet Account

<s>|

Service
Cataiog
Fuppet

Service
Cataiog
Fuppet

Service

Gatalog Puppet
Gonerate

shares.

_static/plus.png

_static/file.png

_images/whatisthis.png
YAML

Account 2

—iE

AWS Service Aws.
Gatalog. GloudFormation
Account 3

Aws
CodeCommit

>

Aws
CodePipeline

N &

AWS Service Aws.
Gatalog. GloudFormation

_static/minus.png

