
aws-service-catalog-puppet

Eamonn Faherty

Oct 08, 2019

CONTENTS

1 What is this? 1
1.1 High level architecture diagram . 2

2 Getting up and running 3
2.1 What am I going to install? . 3
2.2 Before you install . 4
2.3 Installing the tool . 4
2.4 Setting it up . 4

3 Designing your manifest 7
3.1 Purpose of the manifest file . 7

4 Sharing a portfolio 17
4.1 What is sharing and how does it work? . 17
4.2 How can I set it up? . 17
4.3 What is the recommended implementation pattern? . 19
4.4 Is there anything else I should know? . 19

5 Notifications 21

6 Upgrading 23

7 Frequently asked Questions (FAQ) 25
7.1 PuppetRole has been recreated . 25
7.2 How do I enable OpsCenter support . 25

8 Using the CLI 27
8.1 reset-provisioned-product-owner . 27
8.2 add-to-accounts . 27
8.3 remove-from-accounts . 28
8.4 add-to-launches . 28
8.5 remove-from-launches . 28
8.6 dry-run . 29
8.7 import-product-set . 29
8.8 list-resources . 29
8.9 run . 31
8.10 list-launches . 31

9 Using the SDK 33
9.1 Functions . 33

i

10 Project Assurance 35
10.1 Assurance . 35
10.2 Project Management . 35

Python Module Index 37

Index 39

ii

CHAPTER

ONE

WHAT IS THIS?

Service Catalog Puppet is a framework that enables you to provision service catalog products into accounts that need
to have them. You declare your service catalog products and the accounts you want them to be available in via a
configuration file. Service Catalog Puppet then walks through this configuration file and determines which products
need to be made available in which accounts. You can use tags or account numbers to indicate which products should
be available in which accounts. For example if using tags for both accounts and products, products tagged dev will be
made available in accounts tagged dev.

The framework works through your lists, dedupes and spots collisions and then provisions the products into your
AWS accounts for you. It handles Service Portfolio sharing, accepting Portfolio shares and can provision products
cross account and cross region.

1

aws-service-catalog-puppet

1.1 High level architecture diagram

What
is this

You use an AWS CodeBuild project in a central hub account that provisions AWS Service Catalog Products into spoke
accounts on your behalf. The framework takes care of cross account sharing and cross region product replication for
you.

2 Chapter 1. What is this?

CHAPTER

TWO

GETTING UP AND RUNNING

ServiceCatalog-Puppet runs in your AWS Account. In order for you to install it into your account you can use the
aws-service-catalog-puppet cli. This is distributed via [PyPi](https://pypi.org/project/aws-service-catalog-puppet/)

2.1 What am I going to install?

ServiceCatalog-Puppet is bootstrapped from your local machine. You install a command line utility that will provision
the resources you need into your AWS Account. Once you have completed the bootstrap you will have the following
pipeline in your account:

using the following services:

3

https://pypi.org/project/aws-service-catalog-puppet/

aws-service-catalog-puppet

2.2 Before you install

You should consider which account will be the home for your puppet. This account will contain the AWS Code-
Pipelines and will need to be accessible to any accounts you would like to share with. If you are using ServiceCatalog-
Factory, we recommend you install both tools into the same account.

2.3 Installing the tool

This is a python cli built using Python 3.

It is good practice to install Python libraries in isolated environments. You can create the a virtual environment using
the following command:

virtualenv --python=python3.7 venv
source venv/bin/activate

Once you have decided where to install the library you can install the package:

pip install aws-service-catalog-puppet

This will install the library and all of the dependencies.

2.4 Setting it up

The Puppet will run in your account and needs some configuration. You will need to stand up the puppet and set up
the configuration for it to run smoothly.

You will also need to provision an IAM Role within the _spoke_ accounts - those you want to provision products in.

2.4.1 Bootstrap your spokes

You will need to bootstrap each of your spokes. In order to do so please export your credentials and then run:

servicecatalog-puppet bootstrap-spoke <ACCOUNT_ID_OF_YOUR_PUPPET>

2.4.2 Bootstrap your account

There are two or threes parts to bootstrapping the puppet.

Setting up your global configuration

The first is concerned with setting the global configurations. To do this we use AWS SSM Parameters. To get setup
you need to create a configuration file with a list of regions you want to use. You must also specify if you want to
collect the CloudFormation events from provisioning actions via SQS.

Here is an example config.yaml:

4 Chapter 2. Getting up and running

aws-service-catalog-puppet

regions: [
'us-east-2',
'us-east-1',
'us-west-1',
'us-west-2',
'ap-south-1',
'ap-northeast-2',
'ap-southeast-1',
'ap-southeast-2',
'ap-northeast-1',
'ca-central-1',
'eu-west-1',
'eu-west-2',
'eu-west-3',
'sa-east-1',

]
should_collect_cloudformation_events: false
should_forward_events_to_eventbridge: true
should_forward_failures_to_opscenter: true

Note: should_collect_cloudformation_events was added in version 0.33.0

Note: should_forward_events_to_eventbridge was added in version 0.35.0 should_forward_failures_to_opscenter
was added in version 0.35.0

Once you have this file you need to upload the config:

servicecatalog-puppet upload-config config.yaml

If you make changes to this you will need to run upload-config and bootstrap commands again for the changes to
occur.

Once that has completed you are ready to bring up the rest of the puppet.

Setting to to use AWS Organizations

The second part to bootstrapping is optional. If you would like to use AWS Organizations features in your manifest
file you will need to set which IAM Role should be used to perform these actions.

To create the correct role in your organization master export your credentials or change profile and run the following:

servicecatalog-puppet bootstrap-org-master <ACCOUNT_ID_OF_YOUR_PUPPET>

This command will provision a role the account you specified and output the ARN of the role.

Once you have the ARN or you know the ARN you want to use you can configure the framework to use it. Export the
credentials for your puppet account or change your profile so you are using your puppet account and run the following
command:

servicecatalog-puppet set-org-iam-role-arn <THE_ARN_YOU_WANT_TO_USE>

Once you have run that command you are ready for the final stage.

2.4. Setting it up 5

aws-service-catalog-puppet

Configuring your puppet

When you bootstrap your account you can choose whether to have a manual approval step in your deployment pipeline.

If you choose to enable manual approvals an AWS SNS Topic with the ARN
arn:aws:sns:${AWS::Region}:${AWS::AccountId}:service-catalog-puppet-dry-run-approvals
will be created to notify you when approvals are required.

To start the bootstrap process you must run the following in your master account:

servicecatalog-puppet bootstrap

If you want to enable manual approvals you must bootstrap using the following command:

servicecatalog-puppet bootstrap --with-manual-approvals

2.4.3 Setup your puppet

Clone the configuration repo and configure your factory by editing the manifest.yaml file:

git clone --config 'credential.helper=!aws codecommit credential-helper $@' --config
→˓'credential.UseHttpPath=true' https://git-codecommit.eu-west-1.amazonaws.com/v1/
→˓repos/ServiceCatalogPuppet
servicecatalog-puppet seed simple ServiceCatalogPuppet
cd ServiceCatalogPuppet
vim manifest.yaml
git add .
git commit -am "initial add"
git push

Wait for pipeline to complete and you have a working puppet.

6 Chapter 2. Getting up and running

CHAPTER

THREE

DESIGNING YOUR MANIFEST

3.1 Purpose of the manifest file

The manifest file is there to describe what you want to provision and into which accounts you want to provision
products into. It is possible to use AWS Organizations to make your manifest file more concise and easier to work
with but the premise is the same - it is just a list of accounts and AWS Service Catalog products.

3.1.1 Sections of the manifest file

There are three sections to a manifest file - the global parameters, the accounts list and the launches. Each of the three
are described in the following sections.

Parameters

It is possible to specify global parameters that should be used when provisioning your AWS Service Catalog Products.
You can set the value to an explicit value or you can set the value to the result of a function call - using funcation calls
to set parameter values is known as using a macro.

Here is an example of a simple global parameter:

schema: puppet-2019-04-01

parameters:
CloudTrailLoggingBucketName:

default: cloudtrail-logs-for-aws

It is possible to also specify a parameter at the account level:

accounts:
- account_id: '<YOUR_ACCOUNT_ID>'
name: '<YOUR_ACCOUNT_NAME>'
default_region: eu-west-1
regions_enabled:

- eu-west-1
- eu-west-1

tags:
- type:prod
- partition:eu
- scope:pci

parameters:
RoleName:

(continues on next page)

7

aws-service-catalog-puppet

(continued from previous page)

default: DevAdmin
Path:
default: /human-roles/

And finally you specify parameters at the launch level:

launches:
account-iam-for-prod:
portfolio: demo-central-it-team-portfolio
product: account-iam
version: v1
parameters:

RoleName:
default: DevAdmin

Path:
default: /human-roles/

deploy_to:
tags:
- tag: type:prod
regions: default_region

Whenever Puppet provisions a product it checks the parameters for the product. If it sees the name match one of the
parameter values it will use it. In order to avoid clashes with parameter names we recommend using descriptive names
like in the example - using the parameter names like BucketName will lead you into trouble pretty quickly.

The order of precedence for parameters is account level parameters override all others and launch level parameters
override global.

Retrieving AWS SSM Parameters

Note: This was added in version 0.0.33

You can retrieve parameter values from SSM. Here is an an example:

schema: puppet-2019-04-01

parameters:
CentralLoggingBucketName:

ssm:
name: central-logging-bucket-name

You can get a different value for each region:

schema: puppet-2019-04-01

parameters:
CentralLoggingBucketName:

ssm:
name: central-logging-bucket-name
region: eu-west-1

Setting AWS SSM Parameters

8 Chapter 3. Designing your manifest

aws-service-catalog-puppet

Note: This was added in version 0.0.34

You can set the value of an SSM Parameter to the output of a CloudFormation stack output:

account-iam-sysops:
portfolio: demo-central-it-team-portfolio
product: account-iam
version: v1
parameters:
Path:

default: /human-roles/
RoleName:
default: SysOps

deploy_to:
tags:
- regions: default_region

tag: type:prod
outputs:
ssm:

- param_name: account-iam-sysops-role-arn
stack_output: RoleArn

The example above will provision the product account-iam into an account. Once the stack has been completed
it will get the value of the output named RoleArn of the CloudFormation stack and insert it into SSM within the
default region using a parameter name of account-iam-sysops-role-arn

You can also set override which region the output is read from and which region the SSM parameter is written to:

account-iam-sysops:
portfolio: demo-central-it-team-portfolio
product: account-iam
version: v1
parameters:
Path:

default: /human-roles/
RoleName:
default: SysOps

deploy_to:
tags:
- regions: default_region

tag: type:prod
outputs:
ssm:

- param_name: account-iam-sysops-role-arn
stack_output: RoleArn
region: us-east-1

Note: There is currently no capability of reading a value from a CloudFormation stack from one region and setting
an SSM param in another.

3.1. Purpose of the manifest file 9

aws-service-catalog-puppet

Macros

You can also use a macro to set the value of a parameter. It works in the same way as a normal parameter except it
executes a function to get the value first. Here is an an example:

schema: puppet-2019-04-01

parameters:
AllAccountIds:
macro:
method: get_accounts_for_path
args: /

At the moment there are the following macros supported:

+------------------------+------------------------------+-----------------------------
→˓-----------------+
| macro method name | args | description
→˓ |
+========================+==============================+==+
| get_accounts_for_path | ou path to get accounts for | Returns a comma seperated
→˓list of account ids|
+------------------------+------------------------------+-----------------------------
→˓-----------------+

Accounts

With the accounts section, you can describe your AWS accounts. You can set a default region, the enabled regions and
you can tag your accounts. This metadata describing your account is used to determine which packages get deployed
into your accounts.

Setting a default region

Within your account you may have a _home_ or a default region. This may be the closest region to the team using
the account. You use default_region when describing your account and then you can use default_region
again as a target when you specify your product launches - the product will be provisioned into the region specified.

Here is an example with a default_region set to us-east-1:

schema: puppet-2019-04-01

accounts:
- account_id: '<YOUR_ACCOUNT_ID>'
name: '<YOUR_ACCOUNT_NAME>'
default_region: us-east-1
regions_enabled:

- us-east-1
- us-west-2

tags:
- type:prod
- partition:us
- scope:pci

10 Chapter 3. Designing your manifest

aws-service-catalog-puppet

Note: Please note default_region can only be a string - not a list.

Setting enabled regions

You may chose not to use every region within your AWS Account. When describing an AWS account you can specify
which regions are enabled for an account using regions_enabled.

Here is an example with regions_enabled set to us-east-1 and us-west-2:

schema: puppet-2019-04-01

accounts:
- account_id: '<YOUR_ACCOUNT_ID>'
name: '<YOUR_ACCOUNT_NAME>'
default_region: us-east-1
regions_enabled:

- us-east-1
- us-west-2

tags:
- type:prod
- partition:us
- scope:pci

Note: Please note regions_enabled can only be a list of strings - not a single string

Setting tags

You can describe your account using tags. Tags are specified using a list of strings. We recommend using namespaces
for your tags, adding an extra dimension to them. If you choose to do this you can use a colon to split name and values.

Here is an example with namespaced tags:

schema: puppet-2019-04-01

accounts:
- account_id: '<YOUR_ACCOUNT_ID>'
name: '<YOUR_ACCOUNT_NAME>'
default_region: us-east-1
regions_enabled:

- us-east-1
- us-west-2

tags:
- type:prod
- partition:us
- scope:pci

In this example there the following tags: - namespace of type and value of prod - namespace of partition and value of
us - namespace of scope and value of pci.

The goal of tags is to provide a classification for your accounts that can be used to a deployment time.

3.1. Purpose of the manifest file 11

aws-service-catalog-puppet

Using an OU id or path (integration with AWS Organizations)

Note: This was added in version 0.0.18

When specifying an account you can use short hand notation of ou instead of account_id to build out a list of
accounts with the same properties.

For example you can use an AWS Organizations path:

schema: puppet-2019-04-01

accounts:
- ou: /prod
name: '<CHOOSE A NAME FOR YOUR ACCOUNTS LIST>'
default_region: us-east-1
regions_enabled:

- us-east-1
- us-west-2

tags:
- type:prod
- partition:us
- scope:pci

The framework will get a list of all AWS accounts within the /prod Organizational unit and expand your manifest
to look like the following (assuming accounts 0123456789010 and 0109876543210 are the only accountss within
/prod):

schema: puppet-2019-04-01

accounts:
- account_id: 0123456789010
name: '<YOUR_ACCOUNT_NAME>'
default_region: us-east-1
regions_enabled:

- us-east-1
- us-west-2

tags:
- type:prod
- partition:us
- scope:pci

- account_id: 0109876543210
name: '<YOUR_ACCOUNT_NAME>'
default_region: us-east-1
regions_enabled:

- us-east-1
- us-west-2

tags:
- type:prod
- partition:us
- scope:pci

Launches

Launches allow you to decide which products get provisioned into each account. You link product launches to accounts
using tags or explicit account ids and you can set which regions the products are launched into.

12 Chapter 3. Designing your manifest

aws-service-catalog-puppet

Timeouts

Note: This was added in version 0.1.14

If you are worried that a launch may fail and take a long time to fail you can set a timeout timeoutInSeconds:

schema: puppet-2019-04-01

launches:
account-iam-for-prod:
portfolio: example-simple-central-it-team-portfolio
product: account-iam
timeoutInSeconds: 10
version: v1
deploy_to:

tags:
- tag: type:prod
regions: default_region

Tag based launches

You can specify a launch to occur using tags in the deploy_to section of a launch.

Here is an example, it deploys a v1 of a product named account-iam from the portfolio
example-simple-central-it-team-portfolio into into the default_region of all accounts
tagged type:prod:

schema: puppet-2019-04-01

launches:
account-iam-for-prod:
portfolio: example-simple-central-it-team-portfolio
product: account-iam
version: v1
deploy_to:

tags:
- tag: type:prod
regions: default_region

Account based launches

You can also specify a launch to occur explicity in an account by using the accounts section in the deploy_to
section of a launch.

Here is an example, it deploys a v1 of a product named account-iam from the portfolio
example-simple-central-it-team-portfolio into into the default_region of the accounts
0123456789010:

schema: puppet-2019-04-01

launches:
account-iam-for-prod:

(continues on next page)

3.1. Purpose of the manifest file 13

aws-service-catalog-puppet

(continued from previous page)

portfolio: example-simple-central-it-team-portfolio
product: account-iam
version: v1
deploy_to:
accounts:
- account_id: '0123456789010'
regions: default_region

Choosing which regions to provision into

When writing your launches you can choose which regions you provision into.

The valid values for regions are: - enabled - this will deploy to each enabled region for the account - regions_enabled -
this will deploy to each enabled region for the account - default_region - this will deploy to the default region specified
for the account - all - this will deploy to all regions enabled in your config (whilst setting up Puppet) - list of AWS
regions - you can type in a list of AWS regions (each region selected should be present in your config)

Dependencies between launches

Where possible we recommend building launches to be independent. However, there are cases where you may need
to setup a hub account before setting up a spoke or there may be times you are using AWS Lambda to back AWS
CloudFormation custom resources. In these examples it would be beneficial to be able to say deploy launch x and then
launch y. To achieve this You can use depends_on within your launch like so:

launches:
account-vending-account-creation:
portfolio: demo-central-it-team-portfolio
product: account-vending-account-creation
version: v1
depends_on:

- account-vending-account-bootstrap-shared
- account-vending-account-creation-shared

deploy_to:
tags:
- tag: scope:puppet-hub
regions: default_region

account-vending-account-bootstrap-shared:
portfolio: demo-central-it-team-portfolio
product: account-vending-account-bootstrap-shared
version: v1
deploy_to:
tags:
- tag: scope:puppet-hub
regions: default_region

account-vending-account-creation-shared:
portfolio: demo-central-it-team-portfolio
product: account-vending-account-creation-shared
version: v1
deploy_to:
tags:
- tag: scope:puppet-hub
regions: default_region

14 Chapter 3. Designing your manifest

aws-service-catalog-puppet

In this example the framework will deploy account-vending-account-creation only when
account-vending-account-bootstrap-shared and account-vending-account-creation-shared
have been attempted.

Termination of products

Note: This was added in version 0.1.11

To terminate the provisioned product from a spoke account (which will delete the resources deployed) you can change
the status of the launch using the status keyword:

launches:
account-vending-account-creation:
portfolio: demo-central-it-team-portfolio
product: account-vending-account-creation
version: v1
status: terminated
deploy_to:
tags:
- tag: scope:puppet-hub
regions: default_region

When you mark a launch as terminated and run your pipeline the resources will be deleted and you can then remove
the launch from your manifest. Leaving it in will not cause any errors but will result in your pipeline running time to
be longer than it needs to be.

Please note, when mark your launch as terminated it cannot have dependencies, parameters or outputs. Leaving
these in will cause the termination action to fail.

Note: When you set status to terminated you must remove your depends_on and parameters for it to work.

Warning: Since 0.1.16, terminating a product will also remove any SSM Parameters you created for it via the
manifest.yaml

3.1. Purpose of the manifest file 15

aws-service-catalog-puppet

16 Chapter 3. Designing your manifest

CHAPTER

FOUR

SHARING A PORTFOLIO

4.1 What is sharing and how does it work?

Note: This was added in version 0.1.14

This framework allows you to create portfolios in other accounts that mirror the portfolio in your hub account. The
framework will create the portfolio for you and copy the products (along with their versions) from your hub account
into the newly created portfolio.

In addition to this, you can specify associations for the created portfolio and add launch constraints for the products.

Warning: Once a hub product version has been copied into a spoke portfolio it will not be updated.

4.2 How can I set it up?

The following is an example of how to add the portfolio example-simple-central-it-team-portfolio
to all spokes tagged scope:spoke:

spoke-local-portfolios:
account-vending-for-spokes:
portfolio: example-simple-central-it-team-portfolio
depends_on:

- account-iam-for-spokes
associations:

- arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
constraints:

launch:
- product: account-vending-account-creation-shared
roles:
- arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

deploy_to:
tags:
- tag: scope:spoke
regions: default_region

The example above will create the portfolio once the depends_on launches have completed successfully.

The valid values for regions are: - enabled - this will deploy to each enabled region for the account - regions_enabled -
this will deploy to each enabled region for the account - default_region - this will deploy to the default region specified

17

aws-service-catalog-puppet

for the account - all - this will deploy to all regions enabled in your config (whilst setting up Puppet) - list of AWS
regions - you can type in a list of AWS regions (each region selected should be present in your config)

4.2.1 How can I add an association?

The example above will add an association for the IAM principal:

arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

so the portfolio will be accessible for anyone assuming that role. In addition to roles, you can also specify the ARN of
users and groups.

Note: Using ${AWS::AccountId} will evaluate in the spoke account.

4.2.2 How can I add a launch constraint?

The example above will add a launch constraint for the IAM role:

arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

so they can launch the product account-vending-account-creation-shared in the spoke account.

Warning: You can only specify an IAM role and the role must be assumable by the AWS service principal
servicecatalog.amazonaws.com

Note: Using ${AWS::AccountId} will evaluate in the spoke account.

Note: Support for using products was added in version 0.3.0.

You can use products instead of product to specify either a list of products or use a regular expression. The
regular expression is matched using Python3 re.match.

Using a list:

spoke-local-portfolios:
account-vending-for-spokes:
portfolio: example-simple-central-it-team-portfolio
depends_on:

- account-iam-for-spokes
associations:

- arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
constraints:

launch:
- products:

- account-vending-account-bootstrap-shared
- account-vending-account-creation-shared

roles:
- arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

deploy_to:
tags:

(continues on next page)

18 Chapter 4. Sharing a portfolio

aws-service-catalog-puppet

(continued from previous page)

- tag: scope:spoke
regions: default_region

Using a regular expression:

spoke-local-portfolios:
account-vending-for-spokes:
portfolio: example-simple-central-it-team-portfolio
depends_on:

- account-iam-for-spokes
associations:

- arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole
constraints:

launch:
- products: "account-vending-account-*"
roles:
- arn:aws:iam::${AWS::AccountId}:role/MyServiceCatalogAdminRole

deploy_to:
tags:
- tag: scope:spoke
regions: default_region

4.3 What is the recommended implementation pattern?

1. Add an entry to launches that will provision a product into to your matching spokes. This product should provide
the IAM roles your users will assume to interact with the portfolio you are going to add.

2. Add an entry to spoke-local-portfolios to add a portfolio to your matching spokes. This should depend on the
product you launched that contains the IAM roles you added to the launches section of your manifest.

4.4 Is there anything else I should know?

1. It would be good to become familar with the AWS Service Catalog pricing before using this feature.

4.3. What is the recommended implementation pattern? 19

https://aws.amazon.com/servicecatalog/pricing/

aws-service-catalog-puppet

20 Chapter 4. Sharing a portfolio

CHAPTER

FIVE

NOTIFICATIONS

You can listen to the AWS CloudFormation stack events from your product provisioning.

This is the recommended way of discovering provisioning errors.

When you bootstraped your account you will have created an AWS SQS Queue:
servicecatalog-puppet-cloudformation-events in your default region.

You will also have SNS Topics in each region configured to push events to this queue:
servicecatalog-puppet-cloudformation-regional-events

Please note this will only receive notifications for products provisioned using ServiceCatalog-Puppet - any self service
vending from AWS Service Catalog will not publish to this queue.

You should handle consuming the queue and have your own error handling code.

21

aws-service-catalog-puppet

22 Chapter 5. Notifications

CHAPTER

SIX

UPGRADING

Firstly, verify which version you have installed already:

servicecatalog-puppet version

If this errors, check you have activated your virtualenv.

Then you are ready to install the version you want:

pip install aws-service-catalog-puppet==<version>

If you want to upgrade to the latest you can run:

pip install --upgrade aws-service-catalog-puppet

Once you have completed the upgrade you will have to bootstrap your install again:

servicecatalog-puppet bootstrap

And finally, you can verify the upgrade has worked by running version again:

servicecatalog-puppet version

23

aws-service-catalog-puppet

24 Chapter 6. Upgrading

CHAPTER

SEVEN

FREQUENTLY ASKED QUESTIONS (FAQ)

• PuppetRole has been recreated

• How do I enable OpsCenter support

7.1 PuppetRole has been recreated

Q. My PuppetRole has been recreated and now I cannot perform updates to provisioned products. What should I
do?

A. You will need to follow these steps:

• Delete the AWS Cloudformation Stacks named servicecatalog-puppet-shares. There will be one in
each region you operate in. you can use the utility delete-stack-from-all-regions to help

• Run the puppet pipeline again

• Run the cli command reset-provisioned-product-owner on your expanded manifest file.

7.2 How do I enable OpsCenter support

Q. How do I enable OpsCenter support?

A. You will need to be running at least version 0.35.0. You can check your version by running the version cli command.
If it is below 0.35.0 you will need to upgrade. Once you are running the correct version you will been to update your
config file to include:

should_forward_failures_to_opscenter: true

Your file should look like the following:

regions: [
'eu-west-1',
'eu-west-2',
'eu-west-3'

]
should_forward_failures_to_opscenter: true

Once you have made the change you will need to upload your config again:

25

https://aws-service-catalog-factory.readthedocs.io/en/latest/factory/using_the_cli.html#delete-stack-from-all-regions
https://aws-service-catalog-factory.readthedocs.io/en/latest/factory/using_the_cli.html#reset-provisioned-product-owner

aws-service-catalog-puppet

servicecatalog-puppet upload-config config.yaml

26 Chapter 7. Frequently asked Questions (FAQ)

CHAPTER

EIGHT

USING THE CLI

The following utils will help you manage your AWS Accounts when using ServiceCatalog-Puppet:

8.1 reset-provisioned-product-owner

Note: This was added in version 0.19.0

You can use the servicecatalog-puppet cli to update the Service Catalog Puppet managed provisioned product
owner for each provisioned product across all of your accounts:

servicecatalog-puppet reset-provisioned-product-owner <path_to_expanded_manifest>

Will call the following function for each provisioned product you have:

service_catalog.update_provisioned_product_properties(
ProvisionedProductId=provisioned_product_id,
ProvisionedProductProperties={

'OWNER': f"arn:aws:iam::{self.account_id}:role/servicecatalog-puppet/
→˓PuppetRole"

}
)

8.2 add-to-accounts

Note: This was added in version 0.18.0

You can use the servicecatalog-puppet cli to see add an account or ou to your accounts list:

servicecatalog-puppet add-to-accounts <path_to_file_containing_account_or_ou>

The file containing the account or ou should be structured like this:

account_id: '753572411233'
default_region: eu-west-1
name: '753572411233'
regions_enabled:

(continues on next page)

27

aws-service-catalog-puppet

(continued from previous page)

- eu-west-1
- eu-west-2

tags:
- type:prod
- partition:eu
- scope:pci

8.3 remove-from-accounts

Note: This was added in version 0.18.0

You can use the servicecatalog-puppet cli to remove an account or ou to your accounts list:

servicecatalog-puppet remove-from-accounts <account_id_or_ou_id_or_ou_path>

The library will look for the given account id, ou id or ou path and remove it, if found. If it is missing an exception
will be raised.

8.4 add-to-launches

Note: This was added in version 0.18.0

You can use the servicecatalog-puppet cli to see add a launch to your launches list:

servicecatalog-puppet add-to-launches <launch-name-to-add> <path_to_file_containing_
→˓launch>

The file containing the launch should be structured like this:

portfolio: example-simple-central-it-team-portfolio
product: aws-iam-assume-roles-spoke
version: v1
parameters:

SecurityAccountId:
default: '753572411233'

deploy_to:
tags:
- regions: default_region

tag: type:prod

8.5 remove-from-launches

Note: This was added in version 0.18.0

You can use the servicecatalog-puppet cli to see remove a launch from your launches list:

28 Chapter 8. Using the CLI

aws-service-catalog-puppet

servicecatalog-puppet remove-from-launches <launch-name-to-remove>

8.6 dry-run

Note: This was added in version 0.8.0

You can use the servicecatalog-puppet cli to see the effect of your next pipeline run before it happens

servicecatalog-puppet dry-run ServiceCatalogPuppet/manifest.yaml

You must specify the path to the manifest file you want to add execute a dry run on.

8.7 import-product-set

Note: This was added in version 0.8.0

You can use the servicecatalog-puppet cli to import products from the aws-service-catalog-products shared
repo.

This will update your manifest file.

servicecatalog-puppet import-product-set ServiceCatalogPuppet/manifest.yaml aws-iam
→˓central-it-team-portfolio

You must specify the path to the manifest file you want to add the product set to, the name of the product set and the
name of the portfolio where was added.

8.8 list-resources

Note: This was added in version 0.7.0

You can use the servicecatalog-puppet cli to list all the resources that will be created to bootstrap the frame-
work

servicecatalog-puppet list-resources

Will return the following markdown:

Framework resources
SSM Parameters used
- /servicecatalog-puppet/config
Resources for stack: servicecatalog-puppet-org-master

Logical Name Resource Type Name
→˓

(continues on next page)

8.6. dry-run 29

aws-service-catalog-puppet

(continued from previous page)

Param AWS::SSM::Parameter service-catalog-puppet-org-master-
→˓version
PuppetOrgRoleForExpands AWS::IAM::Role PuppetOrgRoleForExpands

→˓

Resources for stack: servicecatalog-puppet-regional

Logical Name Resource Type Name
→˓

DefaultRegionParam AWS::SSM::Parameter /servicecatalog-puppet/home-region
→˓

Param AWS::SSM::Parameter service-catalog-puppet-regional-
→˓version
PipelineArtifactBucket AWS::S3::Bucket Fn::Sub: sc-puppet-pipeline-

→˓artifacts-${AWS::AccountId}-${AWS::Region}

→˓

RegionalProductTopic AWS::SNS::Topic servicecatalog-puppet-cloudformation-
→˓regional-events

Resources for stack: servicecatalog-puppet-spoke

Logical Name Resource Type Name

Param AWS::SSM::Parameter service-catalog-puppet-spoke-version
PuppetRole AWS::IAM::Role PuppetRole

Resources for stack: servicecatalog-puppet

Logical Name Resource Type Name
→˓

Param AWS::SSM::Parameter service-catalog-
→˓puppet-version
ShareAcceptFunctionRole AWS::IAM::Role

→˓ShareAcceptFunctionRole
ProvisioningRole AWS::IAM::Role

→˓PuppetProvisioningRole
CloudFormationDeployRole AWS::IAM::Role

→˓CloudFormationDeployRole
PipelineRole AWS::IAM::Role

→˓PuppetCodePipelineRole
SourceRole AWS::IAM::Role PuppetSourceRole

→˓

CodeRepo AWS::CodeCommit::Repository
→˓ServiceCatalogPuppet
Pipeline AWS::CodePipeline::Pipeline Fn::Sub: $

→˓{AWS::StackName}-pipeline

→˓

GenerateRole AWS::IAM::Role PuppetGenerateRole
→˓

DeployRole AWS::IAM::Role PuppetDeployRole
→˓

GenerateSharesProject AWS::CodeBuild::Project servicecatalog-
→˓puppet-generate (continues on next page)

30 Chapter 8. Using the CLI

aws-service-catalog-puppet

(continued from previous page)

DeployProject AWS::CodeBuild::Project servicecatalog-
→˓puppet-deploy
SingleAccountRunProject AWS::CodeBuild::Project servicecatalog-

→˓puppet-single-account-run
CloudFormationEventsQueue AWS::SQS::Queue servicecatalog-

→˓puppet-cloudformation-events
CloudFormationEventsQueuePolicy AWS::SQS::QueuePolicy -

→˓

n.b. AWS::StackName evaluates to servicecatalog-puppet

8.9 run

Note: This was added in version 0.3.0

The run command will run the main AWS CodePipeline servicecatalog-puppet-pipeline

servicecatalog-puppet run

You can also tail the command to watch the progress of the pipeline. It is a little underwhelming at the moment.

servicecatalog-puppet run --tail

8.10 list-launches

The list-launches command can currently only be invoked on an expanded manifest.yaml file. To expand your manifest
you must run the following:

servicecatalog-puppet expand manifest.yaml

This will create a file named manifest-expanded.yaml in the same directory.

You can then run list-launches:

servicecatalog-puppet list-launches manifest-expanded.yaml

Here is an example table produced by running the command:

+--------------+-----------+------------------------------+---------------------------
→˓---------------+---------------------------------+------------------+---------------
→˓-+--------+-----------+
| account_id | region | launch | portfolio
→˓ | product | expected_version | actual_
→˓version | active | status |
+--------------+-----------+------------------------------+---------------------------
→˓---------------+---------------------------------+------------------+---------------
→˓-+--------+-----------+
| 012345678901 | eu-west-1 | iam-assume-roles-spoke | example-simple-central-it-
→˓team-portfolio | aws-iam-assume-roles-spoke | v1 | v1
→˓ | True | AVAILABLE | (continues on next page)

8.9. run 31

aws-service-catalog-puppet

(continued from previous page)

| 012345678901 | eu-west-1 | iam-groups-security-account | example-simple-central-it-
→˓team-portfolio | aws-iam-groups-security-account | v1 | v1
→˓ | True | AVAILABLE |
+--------------+-----------+------------------------------+---------------------------
→˓---------------+---------------------------------+------------------+---------------
→˓-+--------+-----------+

Note: This was added in version 0.15.0

You can specify the format of the output. Currently you can choose between json and table. The default is table.

servicecatalog-puppet list-launches manifest-expanded.yaml --format json

32 Chapter 8. Using the CLI

CHAPTER

NINE

USING THE SDK

Note: This was added in 0.18.0

Service Catalog Puppet includes a published SDK. You can make use of the python functions available:

from servicecatalog_puppet import sdk

The functions available are:

9.1 Functions

servicecatalog_puppet.sdk.add_to_accounts(account_or_ou)
Add the parameter to the account list of the manifest file

Parameters account_or_ou – A dict describing the the account or the ou to be added

servicecatalog_puppet.sdk.add_to_launches(launch_name, launch)
Add the given launch to the launches section using the given launch_name

Parameters

• launch_name – The launch name to use when adding the launch to the manifest launches

• launch – The dict to add to the launches

servicecatalog_puppet.sdk.bootstrap(with_manual_approvals)
Bootstrap the puppet account. This will create the AWS CodeCommit repo containing the config and it will also
create the AWS CodePipeline that will run the solution.

Parameters with_manual_approvals – Boolean to specify whether there should be manual
approvals before provisioning occurs

servicecatalog_puppet.sdk.remove_from_accounts(account_id_or_ou_id_or_ou_path)
remove the given account_id_or_ou_id_or_ou_path from the account list

Parameters account_id_or_ou_id_or_ou_path – the value can be an account_id, ou_id
or an ou_path. It should be present in the

accounts list within the manifest file or an error is generated

servicecatalog_puppet.sdk.remove_from_launches(launch_name)
remove the given launch_name from the launches list

Parameters launch_name – The name of the launch to be removed from the launches section of
the manifest file

33

aws-service-catalog-puppet

servicecatalog_puppet.sdk.run(what=’puppet’, wait_for_completion=False)
Run something

Parameters

• what – what should be run. The only parameter that will work is puppet

• wait_for_completion – Whether the command should wait for the completion of the
pipeline before it returns

servicecatalog_puppet.sdk.upload_config(config)
This function allows you to upload your configuration for puppet. At the moment this should be a dict with an
attribute named regions: regions: [

‘eu-west-3’, ‘sa-east-1’,

]

Parameters config – The dict containing the configuration used for puppet

34 Chapter 9. Using the SDK

CHAPTER

TEN

PROJECT ASSURANCE

10.1 Assurance

This project has been through an assurance process to ensure the project is:

• valuable to AWS customers

• properly licenced

The same process ensures that there are mechanisms to ensure maintainers are:

• likely able to acceptably support it with regards to being responsive to github issues and pull requests

And finally, at the time of publishing:

• any 3rd party components actually contained in the repo are checked to ensure they are correctly licensed and
that we are correctly complying with the open source licenses that apply to those 3rd party components.

10.2 Project Management

10.2.1 Quality Assurance

CICD Process

Unit tests are run on every commit. If unit tests fail a release of the project cannot occur.

The project dependencies are scanned on each commit for known vulnerabilities. If an issue is discovered a release of
the project cannot occur.

Review Process

There are regular reviews of the source code where static analysis results and unit test coverage are assessed.

10.2.2 Raising a feature request

Product feature requests drive the majority of changes to this project. If you would like to raise a feature request please
raise a Github issue.

35

aws-service-catalog-puppet

10.2.3 Backwards compatibility

All changes to date have been fully backwards compatible. Effort will be made to ensure this where possible.

10.2.4 Design consultation

When there is a significant addition or change to the internal implementation we consult a limited number of users.
Users are asked to access the potential impact so that we can understand the impact and the potential value of the
change. If you would like to register as such a user please raise a Github issue.

36 Chapter 10. Project Assurance

PYTHON MODULE INDEX

s
servicecatalog_puppet.sdk, 33

37

aws-service-catalog-puppet

38 Python Module Index

INDEX

A
add_to_accounts() (in module servicecata-

log_puppet.sdk), 33
add_to_launches() (in module servicecata-

log_puppet.sdk), 33

B
bootstrap() (in module servicecatalog_puppet.sdk),

33

R
remove_from_accounts() (in module servicecata-

log_puppet.sdk), 33
remove_from_launches() (in module servicecata-

log_puppet.sdk), 33
run() (in module servicecatalog_puppet.sdk), 33

S
servicecatalog_puppet.sdk (module), 33

U
upload_config() (in module servicecata-

log_puppet.sdk), 34

39

	What is this?
	High level architecture diagram

	Getting up and running
	What am I going to install?
	Before you install
	Installing the tool
	Setting it up

	Designing your manifest
	Purpose of the manifest file

	Sharing a portfolio
	What is sharing and how does it work?
	How can I set it up?
	What is the recommended implementation pattern?
	Is there anything else I should know?

	Notifications
	Upgrading
	Frequently asked Questions (FAQ)
	PuppetRole has been recreated
	How do I enable OpsCenter support

	Using the CLI
	reset-provisioned-product-owner
	add-to-accounts
	remove-from-accounts
	add-to-launches
	remove-from-launches
	dry-run
	import-product-set
	list-resources
	run
	list-launches

	Using the SDK
	Functions

	Project Assurance
	Assurance
	Project Management

	Python Module Index
	Index

